Evaluating Observation Influence on Regional Water Budgets in Reanalyses

Author:

Bosilovich Michael G.1,Chern Jiun-Dar2,Mocko David3,Robertson Franklin R.4,da Silva Arlindo M.1

Affiliation:

1. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

2. Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

3. SAIC, and Global Modeling and Assimilation Office, Greenbelt, Maryland

4. NASA Marshall Space Flight Center, Huntsville, Alabama

Abstract

Abstract The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model or perhaps assimilating data from an inconsistent observing system. In the MERRA reanalysis, an area of long-term moisture flux divergence over land has been identified over the central United States. Here, the water vapor budget is evaluated in this region, taking advantage of two unique features of the MERRA diagnostic output: 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output dataset of the assimilated observations and their innovations (e.g., forecast departures). In the central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRA’s Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 0600 and 1800 UTC analysis cycles, when radiosonde information is not prevalent. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSU-A (mainly window channels) and Atmospheric Infrared Sounder (AIRS). This effort also shows the complexities of the observing system and the reactions of the regional water budgets in reanalyses to the assimilated observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3