A 10-Year Austral Summer Climatology of Observed and Modeled Intraseasonal, Mesoscale, and Diurnal Variations over the Maritime Continent

Author:

Vincent Claire L.1,Lane Todd P.1

Affiliation:

1. School of Earth Sciences, and ARC Centre of Excellence for Climate System Science, The University of Melbourne, Melbourne, Victoria, Australia

Abstract

Abstract The Maritime Continent is one of the wettest regions on the planet and has been shown to be important for global budgets of heat and moisture. Convection in the region, however, varies on several interrelated scales, making it difficult to quantify the precipitation climate and understand the key processes. For example, the diurnal cycle in precipitation over the land varies substantially according to the phase of the Madden–Julian oscillation (MJO), and the diurnal precipitation cycle over the water is coupled to that over the land, in some cases for distances of over 1000 km from the coast. Here, a 10-yr austral summer climatology of diurnal and MJO-scale variations in rain rate over the land and sea over the Maritime Continent is presented. The climatology is based on mesoscale model simulations with a horizontal grid length of 4 km and satellite precipitation estimates. The amplitude of the observed diurnal precipitation cycle is shown to reach a maximum just prior to the MJO active phase, with a weaker secondary maximum after the MJO active phase. Although these two maxima also exist in the modeled diurnal precipitation cycle, there is less difference between the maxima before and after the MJO active phase than in the observations. The modeled sea-breeze circulation is also shown to possess approximately equal maxima just before and just after the MJO active period, suggesting that the asymmetry of the diurnal precipitation cycle about the MJO active period is related more to moisture availability than kinematic forcing.

Funder

ARC Centre of Excellence for Climate System Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3