The future extreme precipitation systems of orographically locked diurnal convection: the benefits of using large-eddy simulation ensembles

Author:

Chen Wei-TingORCID,Chang Yu-HungORCID,Wu Chien-MingORCID,Huang Huai-Yi

Abstract

Abstract The precipitation hotspot of the orographically locked convection highly depends on the interactions among physical processes governing local energetics and cloud dynamics. Accurately estimating the future change of these hotspots will require a model with sufficient spatial resolution as well as an appropriate representation of the critical physical processes. In this study, ensembles of TaiwanVVM large-eddy simulations (Δx = 500 m) were designed to capture the summertime diurnal convection in Taiwan when local circulation dominates. The precipitation hotspots identified by long-term observations are well represented by the present-day ensemble simulations with appropriate environment variabilities. A pseudo global warming experiment is carried out to identify changes in convective structures, which results in local rainfall changes. Under the scenario of 3 K uniform warming with conserved relative humidity, the changes in the thermodynamic environment feature an overall higher convective available potential energy and a small decrease in convective inhibition (CIN), owing to the marked increase in low-level water vapor in the marine boundary layer. The results show that mean precipitation and the occurrence of extreme convective systems (ECSs) increase, with hotspots over mountains expanding toward the foothills and plains. The response in cloud dynamics leads to more short-duration, intense rainfall events. The tracking of ECSs with maximum rainfall exceeding 100 mm h−1 reveals more numerous short-lived ECSs (lifetime <6 h) and the enhancements in maximum updrafts by ∼10 m s−1, in cloud top heights by ∼1 km, and in the volume of cloud objects by ∼1.5 folds. These sets of high-resolution simulations under the specific weather regime offer critical information for assessing the potential impacts of the future changes of extreme rainfall contributed by the orographically locked diurnal convection on natural disasters and water resources.

Funder

National Taiwan University

National Science and Technology Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3