Climate Model Dependence and the Ensemble Dependence Transformation of CMIP Projections

Author:

Abramowitz G.1,Bishop C. H.2

Affiliation:

1. ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

2. Naval Research Laboratory, Monterey, California

Abstract

Abstract Obtaining multiple estimates of future climate for a given emissions scenario is key to understanding the likelihood and uncertainty associated with climate-related impacts. This is typically done by collating model estimates from different research institutions internationally with the assumption that they constitute independent samples. Heuristically, however, several factors undermine this assumption: shared treatment of processes between models, shared observed data for evaluation, and even shared model code. Here, a “perfect model” approach is used to test whether a previously proposed ensemble dependence transformation (EDT) can improve twenty-first-century Coupled Model Intercomparison Project (CMIP) projections. In these tests, where twenty-first-century model simulations are used as out-of-sample “observations,” the mean-square difference between the transformed ensemble mean and “observations” is on average 30% less than for the untransformed ensemble mean. In addition, the variance of the transformed ensemble matches the variance of the ensemble mean about the “observations” much better than in the untransformed ensemble. Results show that the EDT has a significant effect on twenty-first-century projections of both surface air temperature and precipitation. It changes projected global average temperature increases by as much as 16% (0.2°C for B1 scenario), regional average temperatures by as much as 2.6°C (RCP8.5 scenario), and regional average annual rainfall by as much as 410 mm (RCP6.0 scenario). In some regions, however, the effect is minimal. It is also found that the EDT causes changes to temperature projections that differ in sign for different emissions scenarios. This may be as much a function of the makeup of the ensembles as the nature of the forcing conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3