Trends in Tropospheric Humidity from 1970 to 2008 over China from a Homogenized Radiosonde Dataset

Author:

Zhao Tianbao1,Dai Aiguo2,Wang Junhong2

Affiliation:

1. Key Laboratory of Regional Climate-Environment Research for East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract Radiosonde humidity data provide the longest record for assessing changes in atmospheric water vapor, but they often contain large discontinuities because of changes in instrumentation and observational practices. In this study, the variations and trends in tropospheric humidity (up to 300 hPa) over China are analyzed using a newly homogenized radiosonde dataset. It is shown that the homogenization removes the large shifts in the original records of dewpoint depression (DPD) resulting from sonde changes in recent years in China, and it improves the DPD’s correlation with precipitation and the spatial coherence of the DPD trend from 1970 to 2008. The homogenized DPD data, together with homogenized temperature, are used to compute the precipitable water (PW), whose correlation with the PW from ground-based global positioning system (GPS) measurements at three collocated stations is also improved after the homogenization. During 1970–2008 when the record is relatively complete, tropospheric specific humidity after the homogenization shows upward trends, with surface–300-hPa PW increasing by about 2%–5% decade−1 over most of China and by more than 5% decade−1 over northern China in winter. The PW variations and changes are highly correlated with those in lower–midtropospheric mean temperature (r = 0.83), with a dPW/dT slope of ~7.6% K−1, which is slightly higher than the 7% K−1 implied by Clausius–Clapeyron equation with a constant relative humidity (RH). The radiosonde data show only small variations and weak trends in tropospheric RH over China. An empirical orthogonal function (EOF) analysis of the PW reveals several types of variability over China, with the first EOF (31.4% variance) representing an upward PW trend over most of China (mainly since 1987). The second EOF (12.0% variance) shows a dipole pattern between Southeast and Northwest China and it is associated with a similar dipole pattern in atmospheric vertical motion. This mode exhibits mostly multiyear variations that are significantly correlated with Pacific decadal oscillation (PDO) and ENSO indices.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3