Recent Climatology, Variability, and Trends in Global Surface Humidity

Author:

Dai Aiguo1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

AbstractIn situ observations of surface air and dewpoint temperatures and air pressure from over 15 000 weather stations and from ships are used to calculate surface specific (q) and relative (RH) humidity over the globe (60°S–75°N) from December 1975 to spring 2005. Seasonal and interannual variations and linear trends are analyzed in relation to observed surface temperature (T) changes and simulated changes by a coupled climate model [namely the Parallel Climate Model (PCM)] with realistic forcing. It is found that spatial patterns of long-term mean q are largely controlled by climatological surface temperature, with the largest q of 17–19 g kg−1 in the Tropics and large seasonal variations over northern mid- and high-latitude land. Surface RH has relatively small spatial and interannual variations, with a mean value of 75%–80% over most oceans in all seasons and 70%–80% over most land areas except for deserts and high terrain, where RH is 30%–60%. Nighttime mean RH is 2%–15% higher than daytime RH over most land areas because of large diurnal temperature variations. The leading EOFs in both q and RH depict long-term trends, while the second EOF of q is related to the El Niño–Southern Oscillation (ENSO). During 1976–2004, global changes in surface RH are small (within 0.6% for absolute values), although decreasing trends of −0.11% ∼ −0.22% decade−1 for global oceans are statistically significant. Large RH increases (0.5%–2.0% decade−1) occurred over the central and eastern United States, India, and western China, resulting from large q increases coupled with moderate warming and increases in low clouds over these regions during 1976–2004. Statistically very significant increasing trends are found in global and Northern Hemispheric q and T. From 1976 to 2004, annual q (T) increased by 0.06 g kg−1 (0.16°C) decade−1 globally and 0.08 g kg−1 (0.20°C) decade−1 in the Northern Hemisphere, while the Southern Hemispheric q trend is positive but statistically insignificant. Over land, the q and T trends are larger at night than during the day. The largest percentage increases in surface q (∼1.5% to 6.0% decade−1) occurred over Eurasia where large warming (∼0.2° to 0.7°C decade−1) was observed. The q and T trends are found in all seasons over much of Eurasia (largest in boreal winter) and the Atlantic Ocean. Significant correlation between annual q and T is found over most oceans (r = 0.6–0.9) and most of Eurasia (r = 0.4–0.8), whereas it is insignificant over subtropical land areas. RH–T correlation is weak over most of the globe but is negative over many arid areas. The q–T anomaly relationship is approximately linear so that surface q over the globe, global land, and ocean increases by ∼4.9%, 4.3%, and 5.7% per 1°C warming, respectively, values that are close to those suggested by the Clausius–Clapeyron equation with a constant RH. The recent q and T trends and the q–T relationship are broadly captured by the PCM; however, the model overestimates volcanic cooling and the trends in the Southern Hemisphere.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 382 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3