A GRNN-Based Model for ERA5 PWV Adjustment with GNSS Observations Considering Seasonal and Geographic Variations

Author:

Pang Haoyun1,Zhang Lulu2,Liu Wen1,Wang Xin3,Wang Yuefeng1,Huang Liangke1ORCID

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China

2. College of Tourism and Landscape Architecture, Guilin University of Technology, Guilin 541006, China

3. School of Space Science and Physics, Shandong University, Weihai 264209, China

Abstract

Precipitation water vapor (PWV) is an important parameter in numerical weather forecasting and climate research. However, existing PWV adjustment models lack comprehensive consideration of seasonal and geographic factors. This study utilized the General Regression Neural Network (GRNN) algorithm and Global Navigation Satellite System (GNSS) PWV in China to construct and evaluate European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis (ERA5) PWV adjustment models for various seasons and subregions based on meteorological parameters (GMPW model) and non-meteorological parameters (GFPW model). A linear model (GLPW model) was established for model accuracy comparison. The results show that: (1) taking GNSS PWV as a reference, the Bias and root mean square error (RMSE) of the GLPW, GFPW, and GMPW models are about 0/1 mm, which better weakens the systematic error of ERA5 PWV. The overall Bias of the GLPW, GFPW, and GMPW models in the Northwest (NWC), North China (NC), Tibetan Plateau (TP), and South China (SC) subregions is approximately 0 mm after adjustment. The adjusted overall RMSE of the GLPW, GFPW, and GMPW models of the four subregions are 0.81/0.71/0.62 mm, 1.15/0.95/0.77 mm, 1.66/1.26/1.05 mm, and 2.11/1.35/0.96 mm, respectively. (2) The accuracy of the three models is tested using GNSS PWV, which is not involved in the modeling. The adjusted overall RMSE of the GLPW, GFPW, and GMPW models in the four subregions are 0.89/0.85/0.83 mm, 1.61/1.58/1.27 mm, 2.11/1.75/1.68 mm and 3.65/2.48/1.79 mm, respectively. As a result, the GFPW and GMPW models have better accuracy in adjusting ERA5 PWV than the linear model GLPW. Therefore, the GFPW and GMPW models can effectively contribute to water vapor monitoring and the integration of multiple PWV datasets.

Funder

Guangxi Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3