Fusing Precipitable Water Vapor Data in CHINA at Different Timescales Using an Artificial Neural Network

Author:

Xiong Zhaohui,Zhang BaoORCID,Sang Jizhang,Sun Xiaogong,Wei Xiaoming

Abstract

Global climate change has noticeable influences on the water vapor redistribution in China, which is embodied by the fact that both wetting and drying tendencies were observed across China. This poses the necessity to monitor and understand the water vapor evolution in China. However, observations of water vapor from different techniques are subjected to systematic biases, different spatiotemporal resolutions and coverages, and different accuracy, which would hamper their joint use, potentially leading to contradictory conclusions when using different techniques. Data fusion is a promising way to address this problem. Some scholars have proposed several methods to fuse multi-source PWV data in China region, such as the enhanced spatial and temporal adaptive reflectance fusion model, the hybrid PWV fusion model, and the linear calibration model. Although these models can produce PWV products with improved accuracy, they still have some shortcomings, such as no consideration for spatial or temporal variations in bias or inevitably impose some biases inaccurate information since assumptions made for interpolations are imperfect. In this study, we use the high-quality Global Navigation Satellite System (GNSS) precipitable water vapor (PWV) to calibrate and optimize the Moderate-resolution Imaging Spectroradiometer (MODIS) and the European Centre for Medium-Range Weather Forecasts ReAnalyses 5 (ERA5) PWV in 2018–2019 through a Generalized Regression Neural Network (GRNN) at annual, quarterly, and monthly timescales. Validation results demonstrate that modifying the MODIS and ERA5 PWV at the monthly timescale results in the best accuracy. In the monthly experiment, the average bias, standard deviation (STD), and root mean square (RMS) error of modified MODIS PWV are 0.0 mm, 2.6 mm, and 2.6 mm, respectively. The percentage improvement is as high as 50% in terms of RMS compared to the original MODIS PWV. It becomes 0.0 mm, 1.7 mm, and 1.7 mm for the modified ERA5 PWV and the percentage improvement is 40%. Since the biases among different products are well-calibrated and the accuracy of MODIS and ERA5 PWV is improved to the same level of GNSS PWV, we can fuse them by simply merging them. Finally, we generate a new product of PWV in China with a temporal resolution of 1 day, a spatial resolution better than 31 km, and an accuracy better than 2.7 mm, which will serve as a high-quality product for investigating the water vapor redistribution under a changing climate.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3