Constraints on Cumulus Parameterization from Simulations of Observed MJO Events

Author:

Del Genio Anthony D.1,Wu Jingbo2,Wolf Audrey B.2,Chen Yonghua2,Yao Mao-Sung3,Kim Daehyun4

Affiliation:

1. NASA Goddard Institute for Space Studies, New York, New York

2. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

3. Trinnovim LLC, Institute for Space Studies, New York, New York

4. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Two recent activities offer an opportunity to test general circulation model (GCM) convection and its interaction with large-scale dynamics for observed Madden–Julian oscillation (MJO) events. This study evaluates the sensitivity of the Goddard Institute for Space Studies (GISS) GCM to entrainment, rain evaporation, downdrafts, and cold pools. Single Column Model versions that restrict weakly entraining convection produce the most realistic dependence of convection depth on column water vapor (CWV) during the Atmospheric Radiation Measurement MJO Investigation Experiment at Gan Island. Differences among models are primarily at intermediate CWV where the transition from shallow to deeper convection occurs. GCM 20-day hindcasts during the Year of Tropical Convection that best capture the shallow–deep transition also produce strong MJOs, with significant predictability compared to Tropical Rainfall Measuring Mission data. The dry anomaly east of the disturbance on hindcast day 1 is a good predictor of MJO onset and evolution. Initial CWV there is near the shallow–deep transition point, implicating premature onset of deep convection as a predictor of a poor MJO simulation. Convection weakly moistens the dry region in good MJO simulations in the first week; weakening of large-scale subsidence over this time may also affect MJO onset. Longwave radiation anomalies are weakest in the worst model version, consistent with previous analyses of cloud/moisture greenhouse enhancement as the primary MJO energy source. The authors’ results suggest that both cloud-/moisture-radiative interactions and convection–moisture sensitivity are required to produce a successful MJO simulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3