Gross Moist Stability and MJO Simulation Skill in Three Full-Physics GCMs

Author:

Benedict James J.1,Maloney Eric D.1,Sobel Adam H.2,Frierson Dargan M. W.3

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. Department of Applied Mathematics, and Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory, Columbia University, New York, New York

3. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Previous studies have demonstrated a link between gross moist stability (GMS) and intraseasonal variability in theoretical and reduced-complexity models. In such simplified models, MJO-like moisture modes—convectively coupled tropical disturbances akin to the MJO whose formation and dynamics are linked to moisture perturbations—develop only when GMS is either negative or “effectively” negative when considering additional sources of moist entropy. These simplified models typically use a prescribed, time-independent GMS value. Limited work has been done to assess GMS and its connection to intraseasonal variability in full-physics general circulation models (GCMs). The time-mean and intraseasonal behavior of normalized GMS (NGMS) are examined in three pairs of GCMs to elucidate the possible importance of NGMS for the MJO. In each GCM pair, one member produces weak intraseasonal variability, while the other produces robust MJOs because of a change in the treatment of deep convection. A strong linear correlation between time-mean NGMS and MJO simulation skill is observed, such that GCMs with less positive NGMS produce improved MJO eastward propagation. The reduction in time-mean NGMS is primarily due to a sharp drop to negative values in the NGMS component related to vertical advection, while the horizontal advection component has a less clear relationship with MJO simulations. Intraseasonal fluctuations of anomalous NGMS modulate the magnitude of background NGMS but generally do not change the sign of background NGMS. NGMS declines ahead of peak MJO rainfall and increases during and after heaviest precipitation. Total NGMS fluctuates during MJO passage but remains positive, suggesting that other sources of moist entropy are required to generate an effectively negative NGMS.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3