Impact of the Warming Pattern on Global Energetics

Author:

Hernández-Deckers Daniel1,von Storch Jin-Song2

Affiliation:

1. International Max Planck Research School on Earth System Modelling, and Max Planck Institute for Meteorology, Hamburg, Germany

2. Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

Abstract The warming pattern due to higher greenhouse gas concentrations is expected to affect the global atmospheric energetics mainly via changes in the (i) meridional temperature gradient and (ii) mean static stability. Changes in surface meridional temperature gradients have been previously regarded as the determining feature for the energetics response, but recent studies suggest that changes in mean static stability may be more relevant than previously thought. This study aims to determine the relative importance of these two effects by comparing the energetics responses due to different warming patterns using a fully coupled atmosphere–ocean general circulation model. By means of an additional diabatic forcing, experiments with different warming patterns are obtained: one with a 2xCO2-like pattern that validates the method, one with only the tropical upper-tropospheric warming, and one with only the high-latitude surface warming. The study’s findings suggest that the dominant aspect of the warming pattern that alters the global atmospheric energetics is not its associated meridional temperature gradient changes, but the mean static stability changes. The tropical upper warming weakens the energetics by increasing the mean static stability, whereas the surface warming strengthens it by reducing the mean static stability. The combined 2xCO2-like response is dominated by the tropical upper-tropospheric warming effect, hence the weaker energetic activity. Eddy kinetic energy changes consistently, but the two opposite responses nearly cancel each other in the 2xCO2 case. Therefore, estimates of future changes in storminess may be particularly sensitive to the relative magnitude of the main features of the simulated warming pattern.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3