Effects of Global Warming on the Poleward Heat Transport by Non-Stationary Large-Scale Atmospheric Eddies, and Feedbacks Affecting the Formation of the Arctic Climate

Author:

Soldatenko SergeiORCID

Abstract

It is a well-known fact that the observed rise in the Arctic near-surface temperature is more than double the increase in global mean temperature. However, the entire scientific picture of the formation of the Arctic amplification has not yet taken final shape and the causes of this phenomenon are still being discussed within the scientific community. Some recent studies suggest that the atmospheric equator-to-pole transport of heat and moisture, and also radiative feedbacks, are among the possible reasons for the Arctic amplification. In this paper, we highlight and summarize some of our research related to assessing the response of climate in the Arctic to global warming and vice versa. Since extratropical transient eddies dominate the meridional transport of sensible and latent heat from low to high latitudes, we estimated the effect of climate change on meridional heat transport by means of the β-plane model of baroclinic instability. It has been shown that the heat transport from low and middle latitudes to the Arctic by large scale transient eddies increases by about 9% due to global warming, contributing to the polar amplification and thereby a decrease in the extent of the Arctic sea, which, in turn, is an important factor in the formation of the Arctic climate. The main radiative feedback mechanisms affecting the formation of the Arctic climate are also considered and discussed. It was emphasized that the influence of feedbacks depends on a season since the total feedback in the winter season is negative, while in the summer season, it is positive. Thus, further research is required to diminish the uncertainty regarding the character of various feedback mechanisms in the shaping of the Artic climate and, through that, in predicting the extent of Arctic sea ice.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference77 articles.

1. Global Futures Studies and Research www.millennium-project.org/15-global-challenges

2. Paleoclimatology: Reconstructing Climates of the Quaternary;Bradley,2015

3. Contribution of working group I to the Fifth assessment report of the intergovernmental panel on climate change,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3