The Seasonality and Interannual Variability of Arctic Sea Ice Reemergence

Author:

Bushuk Mitchell1,Giannakis Dimitrios2

Affiliation:

1. Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, and Courant Institute of Mathematical Sciences, New York University, New York, New York

2. Courant Institute of Mathematical Sciences, New York University, New York, New York

Abstract

There is a significant gap between the potential predictability of Arctic sea ice area and the current forecast skill of operational prediction systems. One route to closing this gap is improving understanding of the physical mechanisms, such as sea ice reemergence, which underlie this inherent predictability. Sea ice reemergence refers to the tendency of melt-season sea ice area anomalies to recur the following growth season and growth-season anomalies to recur the following melt season. This study builds on earlier work, providing a mode-based analysis of the seasonality and interannual variability of three distinct reemergence mechanisms. These mechanisms are studied using a common set of coupled modes of variability obtained via coupled nonlinear Laplacian spectral analysis, a data analysis technique for high-dimensional multivariate datasets. The coupled modes capture the covariability of sea ice concentration (SIC), sea surface temperature (SST), sea level pressure (SLP), and sea ice thickness (SIT) in a control integration of a global climate model. Using a parsimonious reemergence mode family, the spatial characteristics of growth-to-melt reemergence are studied, and an SIT–SIC reemergence mechanism is examined. A set of reemergence metrics to quantify the amplitude and phase of growth-to-melt reemergence are introduced. Metrics quantifying SST–SIC and SLP–SIC mechanisms for melt-to-growth reemergence are also computed. A simultaneous comparison of the three reemergence mechanisms, with focus on their seasonality and interannual variability, is performed. Finally, the conclusions are tested in a model hierarchy, consisting of models that share the same sea ice component but differ in their atmospheric and oceanic formulation.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3