Characteristics of Arctic Sea-Ice Thickness Variability in GCMs

Author:

Blanchard-Wrigglesworth Edward1,Bitz Cecilia M.1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Skillful Arctic sea ice forecasts may be possible for lead times of months or even years owing to the persistence of thickness anomalies. In this study sea ice thickness variability is characterized in fully coupled GCMs and sea ice–ocean-only models (IOMs) that are forced with an estimate of observations derived from atmospheric reanalysis and satellite measurements. Overall, variance in sea ice thickness is greatest along Arctic Ocean coastlines. Sea ice thickness anomalies have a typical time scale of about 6–20 months, a time scale that lengthens about a season when accounting for ice transport, and a typical length scale of about 500–1000 km. The range of these scales across GCMs implies that an estimate of the number of thickness monitoring locations needed to characterize the full Arctic basin sea ice thickness variability field is model dependent and would vary between 3 and 14. Models with a thinner mean ice state tend to have ice-thickness anomalies that are generally shorter lived and smaller in amplitude but have larger spatial scales. Additionally, sea ice thickness variability in IOMs is damped relative to GCMs in part due to strong negative coupling between the dynamic and thermodynamic processes that affect sea ice thickness. The significance for designing prediction systems is discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3