Large-Scale Climate Modes Drive Low-Frequency Regional Arctic Sea Ice Variability

Author:

Wyburn-Powell Christopher1ORCID,Jahn Alexandra1

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract Summer Arctic sea ice is declining rapidly but with superimposed variability on multiple time scales that introduces large uncertainties in projections of future sea ice loss. To better understand what drives at least part of this variability, we show how a simple linear model can link dominant modes of climate variability to low-frequency regional Arctic sea ice concentration (SIC) anomalies. Focusing on September, we find skillful projections from global climate models (GCMs) from phase 6 of the Coupled Model Intercomparison Project (CMIP6) at lead times of 4–20 years, with up to 60% of observed low-frequency variability explained at a 5-yr lead time. The dominant driver of low-frequency SIC variability is the interdecadal Pacific oscillation (IPO) which is positively correlated with SIC anomalies in all regions up to a lead time of 15 years but with large uncertainty between GCMs and internal variability realization. The Niño-3.4 index and Atlantic multidecadal oscillation have better agreement between GCMs of being positively and negatively related, respectively, with low-frequency SIC anomalies for at least 10-yr lead times. The large variations between GCMs and between members within large ensembles indicate the diverse simulation of teleconnections between the tropics and Arctic sea ice and the dependence on the initial climate state. Further, the influence of the Niño-3.4 index was found to be sensitive to the background climate. Our results suggest that, based on the 2022 phases of dominant climate variability modes, enhanced loss of sea ice area across the Arctic is likely during the next decade. Significance Statement The purpose of this study is to better understand the drivers of low-frequency variability of Arctic sea ice. Teasing out the complicated relationships within the climate system takes a large number of examples. Here, we use 42 of the latest generation of global climate models to construct a simple linear model based on dominant named climate features to predict regional low-frequency sea ice anomalies at a lead time of 2–20 years. In 2022, these modes of variability happen to be in the phases most conducive to low Arctic sea ice concentration anomalies. Given the context of the longer-term trend of sea ice loss due to global warming, our results suggest accelerated Arctic sea ice loss in the next decade.

Funder

National Science Foundation

Alexander von Humboldt-Stiftung

Publisher

American Meteorological Society

Reference158 articles.

1. The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans;Alexander, M. A.,2002

2. The seasonal and regional transition to an ice-free Arctic;Årthun, M.,2021

3. Bader, D. C., R. Leung, M. Taylor, and R. B. McCoy, 2019: E3SM-Project E3SM1.0 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation, accessed 25 January 2023, https://doi.org/10.22033/ESGF/CMIP6.4497.

4. Viewing forced climate patterns through an AI lens;Barnes, E. A.,2019

5. Mapping the future expansion of Arctic open water;Barnhart, K. R.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3