Statistical Seasonal Prediction Based on Regularized Regression

Author:

DelSole Timothy1,Banerjee Arindam2

Affiliation:

1. Department of Atmospheric, Ocean, and Earth Sciences, and Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia

2. Department of Computer Science and Engineering, University of Minnesota, Twin Cities, Minnesota

Abstract

Abstract This paper proposes a regularized regression procedure for finding a predictive relation between one variable and a field of other variables. The procedure estimates a linear prediction model under the constraint that the regression coefficients have smooth spatial structure. The smoothness constraint is imposed using a novel approach based on the eigenvectors of the Laplace operator over the domain, which results in a constrained optimization problem equivalent to either ridge regression or least absolute shrinkage and selection operator (LASSO) regression, which can be solved by standard numerical software. In addition, this paper explores an unconventional procedure whereby regression models are estimated from dynamical model output and then verified against observations—the reverse of the traditional order. The methodology is illustrated by constructing statistical prediction models of summer Texas-area temperature based on concurrent Pacific sea surface temperature (SST). None of the regularized regression models have statistically significant skill when estimated from observations. In contrast, when estimated from dynamical model output, the regression models have skill with respect to dynamical model data because of the substantially larger sample size available from dynamical model output. In addition, the regression models estimated from dynamical model data can predict observed anomalies with significant skill, even though no observations were used directly to estimate the regression models. The results indicate that dynamical models had no significant skill because they could not accurately predict the SST itself, not because they could not capture realistic SST teleconnections.

Funder

National Science Foundation

National Aeronautics and Space Administration

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3