Artificial Skill due to Predictor Screening

Author:

DelSole Timothy1,Shukla Jagadish1

Affiliation:

1. George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Abstract

Abstract This paper shows that if predictors are selected preferentially because of their strong correlation with a prediction variable, then standard methods for validating prediction models derived from these predictors will be biased. This bias is demonstrated by screening random numbers and showing that regression models derived from these random numbers have apparent skill, in a cross-validation sense, even though the predictors cannot possibly have the slightest predictive usefulness. This result seemingly implies that random numbers can give useful predictions, since the sample being predicted is separate from the sample used to estimate the regression model. The resolution of this paradox is that, prior to cross validation, all of the data had been used to evaluate correlations for selecting predictors. This situation differs from real-time forecasts in that the future sample is not available for screening. These results clarify the fallacy in assuming that if a model performs well in cross-validation mode, then it will perform well in real-time forecasts. This bias appears to afflict several forecast schemes that have been proposed in the literature, including operational forecasts of Indian monsoon rainfall and number of Atlantic hurricanes. The cross-validated skill of these models probably would not be distinguishable from that of a no-skill model if prior screening were taken into account.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3