Prediction of Summer Precipitation in North China: Role of the Evolution of Sea Surface Temperature Anomalies from Boreal Winter to Spring

Author:

Liang Yu1,Fan Lei12ORCID,Yang Jianling3

Affiliation:

1. a College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

2. b Key Laboratory of Physical Oceanography/Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

3. c Key Laboratory of Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agricultural in Dry Areas Regions, CMA, Yinchuan, China

Abstract

Abstract Prediction of summer precipitation in north China (NCP) has long been a challenge partly because its low correlation with previous sea surface temperature (SST) anomalies (SSTA) limits the application of SST in NCP prediction. This study aims to extract optimal predictors of NCP from the SST field using an objective method—empirically optimal screening (EOS). It finds that the optimal precursory signal of NCP lies in the change of SSTA from winter to spring rather than the SSTA itself. This study identifies two optimal precursory signs predicting a positive (negative) NCP anomaly: the anomalous SST cooling (warming) from winter to spring in the coastal area of Somalia and Peru. Interestingly, these two presummer conditions have considerable independence, but they lead to a similar summer development of La Niña (El Niño). In summer, the tropical precipitation anomaly pattern associated with La Niña (El Niño) development excites a meridional wave train over the western Pacific and the circumglobal teleconnection in the Northern Hemisphere. Both of the anomalous wave trains show abnormal high (low) pressure over northeast Asia, which induces the south (north) wind anomalies over north China and produces abundant (deficient) precipitation there. These results highlight the importance of the SST evolution from winter to spring, break through the limitation of SST application in NCP prediction, and thus bring a prospect of improving NCP forecast skills. Significance Statement Sea surface temperature (SST) anomalies are most used as predictors in climate prediction. However, the forecast of summer precipitation in north China is limited by its low correlation with prior SST anomalies. In this paper, we find that the optimal precursory signal of north China precipitation (NCP) is not the SST anomaly itself, but the changes of SST anomalies from winter to spring in the coastal area of Somalia and Peru. These two precursory signals are almost independent yet indicate similar summer situations leading to NCP anomaly. These results highlight the importance of the dynamic evolution of sea surface temperature in improving the forecast skill of NCP.

Funder

Natural Science Foundation of China

China Meteorological Administration Innovation and Development Project

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

1. Global land precipitation: A 50-yr monthly analysis based on gauge observations;Chen, M.,2002

2. EOFs: A library for EOF analysis of meteorological, oceanographic, and climate data;Dawson, A.,2016

3. Artificial skill due to predictor screening;DelSole, T.,2009

4. Circumglobal teleconnection in the Northern Hemisphere summer;Ding, Q.,2005

5. Tropical–extratropical teleconnections in boreal summer: Observed interannual variability;Ding, Q.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3