Decomposing Mean Sea Level Rise in a Semi-Enclosed Basin, the Baltic Sea

Author:

Gräwe Ulf1,Klingbeil Knut1,Kelln Jessica2,Dangendorf Sönke2

Affiliation:

1. Leibniz Institute for Baltic Sea Research, Rostock, Germany

2. University of Siegen, Siegen, Germany

Abstract

AbstractWe analyzed changes in mean sea level (MSL) for the period 1950–2015 using a regional ocean model for the Baltic Sea. Sensitivity experiments allowed us to separate external from local drivers and to investigate individual forcing agents triggering basin-internal spatial variations. The model reveals a basin-average MSL rise (MSLR) of 2.08 ± 0.49 mm yr−1, a value that is slightly larger than the simultaneous global average of 1.63 ± 0.32 mm yr−1. This MSLR is, however, spatially highly nonuniform with lower than average increases in the southwestern part (1.71 ± 0.51 mm yr−1) and higher than average rates in the northeastern parts (2.34 ± 1.05 mm yr−1). While 75% of the basin-average MSL externally enters the Baltic basin as a mass signal from the adjacent North Sea, intensified westerly winds and a poleward shift of low pressure systems explain the majority of the spatial variations in the rates. Minor contributions stem from local changes in baroclinicity leading to a basin-internal redistribution of water masses. An observed increase in local ocean temperature further adds to the total basinwide MSLR through thermal expansion but has little effect on the spatial pattern. To test the robustness of these results, we further assessed the sensitivity to six different atmospheric surface forcing reanalysis products over their common period from 1980 to 2005. The ensemble runs indicated that there are significant differences between individual ensemble members increasing the total trend uncertainty for the basin average by 0.22 mm yr−1 (95% confidence intervals). Locally the uncertainty varies from 0.05 mm yr−1 in the central part to up to 0.4 mm yr−1 along the coasts.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3