Performance of the HWRF Rapid Intensification Analog Ensemble (HWRF RI-AnEn) during the 2017 and 2018 HFIP Real-Time Demonstrations

Author:

Lewis William E.1,Rozoff Christopher2,Alessandrini Stefano2,Delle Monache Luca3

Affiliation:

1. Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

2. National Center for Atmospheric Research, Boulder, Colorado

3. Center for Western Weather and Water Extremes, Scripps Institute of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract The performance of the Hurricane Weather Research and Forecasting (HWRF) Model Rapid Intensification Analog Ensemble (RI-AnEn) is evaluated for real-time forecasts made during the National Oceanic and Atmospheric Administration (NOAA)’s 2018 Hurricane Forecast Improvement Program (HFIP) demonstration. Using a variety of assessment tools (Brier skill score, reliability diagrams, ROC curves, ROC skill scores), RI-AnEn is shown to perform competitively compared to both the deterministic HWRF and current operational probabilistic RI forecast aids. The assessment is extended to include forecasts from the 2017 HFIP demonstration and shows that RI-AnEn is the only model with significant RI forecast skill at all lead times in the Atlantic and eastern Pacific basins. Though RI-AnEn is overconfident in its RI forecasts, it is generally well calibrated for all lead times. Furthermore, significance testing indicates that for the 2017–18 Atlantic and eastern Pacific sample, RI-AnEn is more skillful than HWRF at all lead times and better than most of the other probabilistic guidance at 48 and 72 h. ROC curves reveal that RI-AnEn offers a good combination of sensitivity and specificity, performing comparably to SHIPS-RII at all lead times in both basins. With respect to specific high-impact cases from the 2018 Atlantic season, performance of RI-AnEn ranges from excellent (Hurricane Michael) to poor (Hurricane Florence). The multiyear assessment and results for two high-impact case studies from 2018 indicate that, while promising, RI-AnEn requires further work to refine its performance as well as to accurately situate its effectiveness relative to other RI forecasts aids.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference37 articles.

1. Probabilistic prediction of tropical cyclone intensity with an analog ensemble;Alessandrini;Mon. Wea. Rev.,2018

2. Biswas, M. K., and Coauthors, 2018: Hurricane Weather Research and Forecasting (HWRF) Model: 2018 Scientific Documentation. Accessed 15 January 2019, https://dtcenter.org/HurrWRF/users/docs/index.php.

3. Predictability regimes in atmospheric flow;Boer;Mon. Wea. Rev.,1994

4. Verification of forecasts expressed in terms of probability;Brier;Mon. Wea. Rev.,1950

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3