Ertel Potential Vorticity versus Bernoulli Potential on Approximately Neutral Surfaces in the Antarctic Circumpolar Current

Author:

Stanley Geoffrey J.1,Dowling Timothy E.2,Bradley Mary E.3,Marshall David P.4

Affiliation:

1. School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

2. Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky

3. Department of Mathematics, University of Louisville, Louisville, Kentucky

4. Department of Physics, University of Oxford, Oxford, United Kingdom

Abstract

AbstractWe investigate the relationship between Ertel potential vorticity Q and Bernoulli potential B on orthobaric density surfaces in the Antarctic Circumpolar Current (ACC), using the Southern Ocean State Estimate. Similar to the extratropical atmospheres of Earth and Mars, Q and B correlate in the ACC in a function-like manner with modest scatter. Below the near-surface, the underlying function relating Q and B appears to be nearly linear. Nondimensionalizing its slope yields “Ma,” a “Mach” number for long Rossby waves, the ratio of the local flow speed to the intrinsic long Rossby wave speed. We empirically estimate the latter using established and novel techniques that yield qualitatively consistent results. Previous work related “Ma” to the degree of homogeneity of Q and to Arnol’d’s shear stability criteria. Estimates of “Ma” for the whole ACC are notably positive, implying inhomogeneous Q, on all circumpolar buoyancy surfaces studied. Upper layers generally exhibit “Ma” slightly less than unity, suggesting that shear instability may operate within these layers. Deep layers exhibit “Ma” greater than unity, implying stability. On surfaces shallower than 1000 m just north of the ACC, the Q versus B slope varies strongly on subannual and interannual time scales, but “Ma” hovers near unity. We also study spatial variability: the ACC is speckled with hundreds of small-scale features with “Ma” near unity, whereas away from the ACC “Ma” is more commonly negative or above unity, both corresponding to stability. Maps of the time-mean “Ma” show stable regions occupy most of the Southern Ocean, except for several topographically controlled hotspots where “Ma” is always near unity.

Funder

Natural Environment Research Council

Australian Research Council

Publisher

American Meteorological Society

Subject

Oceanography

Reference101 articles.

1. Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean;Abernathey;J. Phys. Oceanogr.,2010

2. Hydraulic control of zonal currents on a β-plane;Armi,1989

3. On an a priori estimate in the theory of hydrodynamic stability;Arnol’d,1966

4. Rationalizing the spatial distribution of mesoscale eddy diffusivity in terms of mixing length theory;Bates;J. Phys. Oceanogr.,2014

5. Two-dimensional turbulence above topography;Bretherton;J. Fluid Mech.,1976

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3