A Features-Based Assessment of the Evolution of Warm Season Precipitation Forecasts from the HRRR Model over Three Years of Development

Author:

Bytheway Janice L.1,Kummerow Christian D.1,Alexander Curtis2

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Abstract

Abstract The High Resolution Rapid Refresh (HRRR) model has been the National Weather Service’s (NWS) operational rapid update model since 2014. The HRRR has undergone continual development, including updates to the Weather Research and Forecasting (WRF) Model core, the data assimilation system, and the various physics packages in order to better represent atmospheric processes, with updated operational versions of the model being implemented approximately every spring. Given the model’s intent for use in convective precipitation forecasting, it is of interest to examine how forecasts of warm season precipitation have changed as a result of the continued model upgrades. A features-based assessment is performed on the first 6 h of HRRR quantitative precipitation forecasts (QPFs) from the 2013, 2014, and 2015 versions of the model over the U.S. central plains in an effort to understand how specific aspects of QPF performance have evolved as a result of continued model development. Significant bias changes were found with respect to precipitation intensity. Model upgrades that increased boundary layer stability and reduced the strength of the latent heating perturbations in the data assimilation were found to reduce southward biases in convective initiation, reduce the tendency for the model to overestimate heavy rainfall, and improve the representation of convective initiation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference13 articles.

1. A North American hour assimilation and model forecast cycle: The Rapid Refresh;Benjamin;Mon. Wea. Rev.,2016

2. Toward an object-based assessment of high- resolution forecasts of long-lived convective precipitation in the central US;Bytheway;J. Adv. Model. Earth Syst.,2015

3. Object-based evaluation of a numerical weather prediction model’s performance through forecast storm characteristic analysis;Cai;Wea. Forecasting,2015

4. Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas;Davis;Mon. Wea. Rev.,2006

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3