Evaluation of the Near-Surface Variables in the HRRR Weather Model Using Observations from the ARM SGP Site

Author:

He Siwei12ORCID,Turner David D.2,Benjamin Stanley G.12,Olson Joseph B.2,Smirnova Tatiana G.12,Meyers Tilden3

Affiliation:

1. a Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

2. b NOAA/Global Systems Laboratory, Boulder, Colorado

3. c NOAA/Air Resources Laboratory, Oak Ridge, Tennessee

Abstract

Abstract The performance of version 4 of the NOAA High-Resolution Rapid Refresh (HRRR) numerical weather prediction model for near-surface variables, including wind, humidity, temperature, surface latent and sensible fluxes, and longwave and shortwave radiative fluxes, is examined over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) region. The study evaluated the model’s bias and bias-corrected mean absolute error relative to the observations on different time scales. Forecasts of near-surface geophysical variables at five SGP sites (HRRR at 3-km scale) were found to agree well with observations, but some consistent observation–forecast differences also occurred. Sensible and latent heat fluxes are the most challenging variables to be reproduced. The diurnal cycle is the main temporal scale affecting observation–forecast differences of the near-surface variables, and almost all of the variables showed different biases throughout the diurnal cycle. Results show that the overestimation of downward shortwave and the underestimation of downward longwave radiative flux are the two major biases found in this study. The timing and magnitude of downward longwave flux, wind speed, and sensible and latent heat fluxes are also different with contributions from model representations, data assimilation limitations, and differences in scales between HRRR and SGP sites. The positive bias in downward shortwave and negative bias in longwave radiation suggests that the model is underestimating cloud fraction in the study domain. The study concludes by showing a brief comparison with version 3 of the HRRR and shows that version 4 has better performance in almost all near-surface variables. Significance Statement A correct representation of the near-surface variables is important for numerical weather prediction models. This study investigates the capability of the latest NOAA High-Resolution Rapid Refresh (HRRRv4) model in simulating the near-surface variables by comparing against the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) in situ observations. Among others, we find that the surface heat fluxes, such as sensible and latent heat fluxes, are the most difficult variables to be reproduced. This study also shows that the diurnal cycle has the dominant impact on the model’s performance, which means the majority of the outputted near-surface variables have the strong diurnal cycle in their bias errors.

Funder

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

1. Scale awareness, resolved circulations, and practical limits in the MYNN–EDMF boundary layer and shallow cumulus scheme;Angevine, W. M.,2020

2. A North American hourly assimilation and model forecast cycle: The Rapid Refresh;Benjamin, S. G.,2016

3. Stratiform cloud-hydrometeor assimilation for HRRR and RAP model short-range weather prediction;Benjamin, S. G.,2021

4. Land–snow assimilation including a moderately coupled initialization method applied to NWP;Benjamin, S. G.,2022a

5. Inland lake temperature initialization via coupled cycling with atmospheric data assimilation;Benjamin, S. G.,2022b

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3