Affiliation:
1. Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California
Abstract
Abstract
A mechanistic model that couples quasigeostrophic dynamics, radiative transfer, ozone transport, and ozone photochemistry is used to study the effects of zonal asymmetries in ozone (ZAO) on the model’s polar vortex. The ZAO affect the vortex via two pathways. The first pathway (P1) hinges on modulation of the propagation and damping of a planetary wave by ZAO; the second pathway (P2) hinges on modulation of the wave–ozone flux convergences by ZAO. In the steady state, both P1 and P2 play important roles in modulating the zonal-mean circulation. The relative importance of wave propagation versus wave damping in P1 is diagnosed using an ozone-modified refractive index and an ozone-modified vertical energy flux. In the lower stratosphere, ZAO cause wave propagation and wave damping to oppose each other. The result is a small change in planetary wave drag but a large reduction in wave amplitude. Thus in the lower stratosphere, ZAO “precondition” the wave before it propagates into the upper stratosphere, where damping due to photochemically accelerated cooling dominates, causing a large reduction in planetary wave drag and thus a colder polar vortex. The ability of ZAO within the lower stratosphere to affect the upper stratosphere and lower mesosphere is discussed in light of secular and episodic changes in stratospheric ozone.
Publisher
American Meteorological Society
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献