The Influence of Zonally Asymmetric Stratospheric Ozone Changes on the Arctic Polar Vortex Shift

Author:

Zhang Jiankai1,Tian Wenshou1,Xie Fei2,Pyle John A.3,Keeble James3,Wang Tao1

Affiliation:

1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

2. College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

3. Department of Chemistry, and National Centre for Atmospheric Science, University of Cambridge, Cambridge, United Kingdom

Abstract

AbstractRecent studies have found a shift of the Arctic stratospheric polar vortex toward Siberia during late winter since 1980, intensifying the zonally asymmetric ozone (ZAO) depletion in the northern middle and high latitudes with a stronger total column ozone decline over Siberia compared with that above other regions at the same latitudes. Using observations and a climate model, this study shows that zonally asymmetric stratospheric ozone depletion gives a significant feedback on the position of the polar vortex and further favors the stratospheric polar vortex shift toward Siberia in February for the period 1980–99. The polar vortex shift is not significant in the experiment forced by zonal mean ozone fields. The February ZAO trend with a stronger ozone decline over Siberia causes a lower temperature over this region than over the other regions at the same latitudes, due to shortwave radiative cooling and dynamical cooling. The combined cooling effects induce an anomalous cyclonic flow over Siberia, corresponding to the polar vortex shift toward Siberia. In addition, the ZAO depletion also increases the meridional gradient of potential vorticity over Siberia, which is favorable for the upward propagation of planetary wave fluxes from the troposphere over this region. Increased horizontal divergence of planetary waves fluxes over the region 60°–75°N, 60°–90°E associated with ZAO changes accelerates the high-latitude zonal westerlies in the middle stratosphere, further enhancing the shift of the stratospheric polar vortex toward Siberia. After 2000, the ZAO trend in February is weaker and induces a smaller polar vortex shift than that in the period 1980–99.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3