A PV Perspective on the Vertical Structure of Mature Midlatitude Cyclones in the Northern Hemisphere

Author:

Čampa Jana1,Wernli Heini2

Affiliation:

1. Institute for Atmospheric Physics, University of Mainz, Mainz, Germany

2. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Abstract

Abstract Development of extratropical cyclones can be seen as an interplay of three positive potential vorticity anomalies: an upper-level stratospheric intrusion, low-tropospheric diabatically produced potential vorticity (PV), and a warm anomaly at the surface acting as a surrogate PV anomaly. This study, based on the interim ECMWF Re-Analysis (ERA-Interim) dataset, quantifies the amplitude of the PV anomalies of mature extratropical cyclones in different regions in the Northern Hemisphere on a climatological basis. A tracking algorithm is applied to sea level pressure (SLP) fields to identify cyclone tracks. Surface potential temperature anomalies Δθ and vertical profiles of PV anomalies ΔPV are calculated at the time of the cyclones’ minimum SLP in a vertical cylinder around the surface cyclone center. To compare the cyclones’ characteristics they are grouped according to their location and intensity. Composite ΔPV profiles are calculated for each region and intensity class at the time of minimum SLP and during the cyclone intensification phase. In the mature stage all three anomalies are on average larger for intense than for weak winter cyclones [e.g., 0.6 versus 0.2 potential vorticity units (PVU; 1 PVU = 10−6 K kg−1 m2 s−1) at lower levels, and 1.5 versus 0.5 PVU at upper levels]. The regional variability of the cyclones’ vertical structure and the profile evolution is prominent (cyclones in some regions are more sensitive to the amplitude of a particular anomaly than in other regions). Values of Δθ and low-level ΔPV are on average larger in the western parts of the oceans than in the eastern parts. Results for summer are qualitatively similar, except for distinctively weaker surface Δθ values.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3