A comprehensive study on changes in coastal hydrodynamics associated with cyclonic activity

Author:

Salama Nada M.,Tonbol Kareem M.,ElKut Ahmed,ElBessa Mohamed,Kotroni Vassiliki

Abstract

AbstractA Mediterranean cyclone is a weather phenomenon capable of producing extremely severe conditions, including heavy rainfall and strong winds. Between March 24 and 26, 2023, a cyclone passed along the western Egyptian Mediterranean coast, spanning three days. This paper aims to investigate the cyclone's impact on wave characteristics, focusing particularly on simulating changes in the energy transported from wind to waves during its passage, which constitutes the core objective of this study. The research methodology involved collecting meteorological and hydrodynamic data over five days from March 23 to 27, 2023, utilizing databases of the Bologna Limited Area Model (BOLAM) and the General Bathymetric Chart of the Oceans (GEBCO). This data, combined with field data for model calibration and validation, was analyzed using the Simulating the WAves Nearshore (SWAN) model packaged within the Delft 3D hydrodynamical model, integrated with other data manipulation tools. (SWAN) demonstrated the ability to simulate energy transport during extreme weather events along the coastal area with high resolution, up to 500 m. The results indicate a significant increase in significant wave height, reaching up to 2.5 m, and disturbances in wind direction, with velocities exceeding 10 m per second. These conditions pose risks to the infrastructure in some cities along the study area and have severe impacts on coastal communities. A notable finding from the simulations is the excess energy transport, which reached up to 12,000 watts per meter over the sea surface during the cyclone. Furthermore, calibration and validation results affirm the (SWAN) model's capability to accurately study wave characteristics.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3