The Instabilities and Multiscale Energetics Underlying the Mean–Interannual–Eddy Interactions in the Kuroshio Extension Region

Author:

Yang Yang1,San Liang X.2

Affiliation:

1. School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China

2. School of Marine Sciences, and School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

AbstractUsing a recently developed energetics diagnostic methodology, namely, the localized multiscale energy and vorticity analysis (MS-EVA), this study investigates the intricate nonlinear mutual interactions among the decadally modulating mean flow, the interannual fluctuations, and the transient eddies in the Kuroshio Extension region. It is found that the mean kinetic energy maximizes immediately east of the Izu–Ogasawara Ridge, while the transient eddy kinetic energy does not peak until 400 km away downstream. The interannual variabilities, which are dominated by a jet-trapped Rossby wave mode, provide an energy reservoir comparable to the other counterparts. In the upstream, strong localized barotropic and baroclinic transfers from the mean flow to the eddies are observed, whereas those from the interannual variabilities are not significant. Besides fueling the eddies, the unstable mean jet also releases energy to the interannual-scale processes. Between 144° and 154°E, both transfers from the mean flow and the interannual variabilities are important for the eddy development. Farther downstream, eddies are found to drive the mean flow on both the kinetic energy (KE) and available potential energy (APE) maps. They also provide KE to the interannual variabilities but obtain APE from the latter. The gained eddy APE is then converted to eddy KE through buoyancy conversion. Upscale energy transfers are observed in the northern and southern recirculation gyre (RG) regions. In these regions, the interannual–eddy interaction exhibits different scenarios: the eddies lose KE to the interannual processes in the northern RG region, while gaining KE in the southern RG region.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3