Divergent Eddy Heat Fluxes in the Kuroshio Extension at 144°–148°E. Part II: Spatiotemporal Variability

Author:

Bishop Stuart P.1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The Kuroshio Extension System Study (KESS) provided 16 months of observations to quantify divergent eddy heat flux (DEHF) from a mesoscale-resolving array of current- and pressure-equipped inverted echo sounders. KESS observations captured a regime shift from a stable to unstable state. There is a distinct difference in the spatial structure of DEHFs between the two regimes. The stable regime had weak downgradient DEHFs. The unstable regime exhibited asymmetry along the mean path with strong downgradient DEHFs upstream of a mean trough at ~147°E. The spatial structure of DEHFs resulted from episodic mesoscale processes. The first 6 months were during the stable regime in which fluxes were associated with eastward-propagating 10–15-day upper meanders. After 6 months, the Kuroshio Extension underwent a regime shift from a stable to unstable state. This regime shift corresponded with a red shift in mesoscale phenomena with the prevalence of ~40-day deep externally generated eddies. DEHF amplitudes more than quadrupled during the unstable regime. Cold-core ring (CCR) formation, CCR–jet interaction, and coupling between ~40-day deep eddies were responsible for asymmetry in downgradient fluxes in the mean maps not observed during the stable regime. The Kuroshio Extension has prominent deep energy associated with externally generated eddies that interact with the jet to drive some of the biggest DEHF events. These eddies play an important role in the variability of the jet through eddy–mean flow interactions. The DEHFs that result from vertical coupling act in accordance with baroclinic instability. The interaction is not growth from an infinitesimal perturbation, but from the start is a finite-amplitude interaction.

Publisher

American Meteorological Society

Subject

Oceanography

Reference29 articles.

1. Evidence of bottom-trapped currents in the Kuroshio Extension region;Bishop;J. Phys. Oceanogr.,2012

2. Divergent eddy heat fluxes in the Kuroshio Extension at 143°–149°E. Part I: Mean structure;Bishop;J. Phys. Oceanogr.,2013

3. Poleward heat flux and conversion of available potential energy in Drake Passage;Bryden;J. Mar. Res.,1979

4. Eddy–mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics;Cronin;J. Phys. Oceanogr.,1996

5. Mapping circulation in the Kuroshio Extension with an array of current- and pressure-recording inverted echo sounders;Donohue;J. Atmos. Oceanic Technol.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3