An Analog Technique to Improve Storm Wind Speed Prediction Using a Dual NWP Model Approach

Author:

Yang Jaemo1,Astitha Marina1,Delle Monache Luca2,Alessandrini Stefano2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract This study presents a new implementation of the analog ensemble method (AnEn) to improve the prediction of wind speed for 146 storms that have impacted the northeast United States in the period 2005–16. The AnEn approach builds an ensemble by using a set of past observations that correspond to the best analogs of numerical weather prediction (NWP). Unlike previous studies, dual-predictor combinations are used to generate AnEn members, which include wind speed, wind direction, and 2-m temperature, simulated by two state-of-the-science atmospheric models [the Weather Research and Forecasting (WRF) Model and the Regional Atmospheric Modeling System–Integrated Community Limited Area Modeling System (RAMS–ICLAMS)]. Bias correction is also applied to each analog to gain additional benefits in predicting wind speed. Both AnEn and the bias-corrected analog ensemble (BCAnEn) are tested with a weighting strategy, which optimizes the predictor combination with root-mean-square error (RMSE) minimization. A leave-one-out cross validation is implemented, that is, each storm is predicted using the remaining 145 as the training dataset, with modeled and observed values over 80 stations in the northeast United States. The results show improvements of 9%–42% and 1%–29% with respect to original WRF and ICLAMS simulations, as measured by the RMSE of individual storms. Moreover, for two high-impact tropical storms (Irene and Sandy), BCAnEn significantly reduces the error of raw prediction (average RMSE reduction of 22% for Irene and 26% for Sandy). The AnEn and BCAnEn techniques demonstrate their potential to combine different NWP models to improve storm wind speed prediction, compared to the use of a single NWP.

Funder

Eversource Energy

Graduate Visitor program of the Advanced Study Program (ASP) of National Center for Atmospheric Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3