Affiliation:
1. Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
2. National Center for Atmospheric Research, Boulder, Colorado
Abstract
Analogs are used as a forecast postprocessing technique, in which a statistical forecast is derived from past prognostic states. This study proposes a method to identify analogs through spatial objects, which are then used to create forecast ensembles. The object-analog technique preserves the field’s spatial relationships, reduces spatial dimensionality, and consequently facilitates the use of artificial intelligence algorithms to improve analog selection. Forecast objects are created with a three-step object selection, combining standard image processing algorithms. The resulting objects are used to find similar forecasts in a training set with a similarity measure based on object area intersection and magnitude. Storm-induced power outages in the Northeast United States motivated the method’s validation for 10-m AGL wind speed forecasts. The training set comprises reforecasts and reanalyses of events that caused damages to the utility infrastructure. The corresponding reanalyses of the best reforecast analogs are used to produce the object-analog ensemble forecasts. The forecasts are compared with other analog forecast methods. Analogs representing lower and upper predictability limits provide references to distinguish the method’s ability (to find good analogs) from the training set’s ability (to provide good analogs) to generate skillful ensemble forecasts. The object-analog forecasts are competitively skillful compared to simpler analog techniques with an advantage of lower spatial dimensionality, while generating reliable ensemble forecasts, with reduced systematic and random errors, maintaining correlation, and improving Brier scores.
Funder
Eversource Energy
National Center for Atmospheric Research
U.S. Army Test and Evaluation Command
Publisher
American Meteorological Society
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献