Research challenges and needs for the deployment of wind energy in hilly and mountainous regions
-
Published:2022-11-08
Issue:6
Volume:7
Page:2231-2254
-
ISSN:2366-7451
-
Container-title:Wind Energy Science
-
language:en
-
Short-container-title:Wind Energ. Sci.
Author:
Clifton AndrewORCID, Barber SarahORCID, Stökl Alexander, Frank Helmut, Karlsson Timo
Abstract
Abstract. The continuing transition to renewable energy will require more wind turbines to be installed and operated on land and offshore. On land, wind turbines will increasingly be deployed in hilly or mountainous regions, which are often described together as “complex terrain” in the wind energy industry. These areas can experience complex flows that are hard to model, as well as cold climate conditions that lead to instrument and blade icing and can further impact wind turbine operation. This paper – a collaboration between several International Energy Agency (IEA) Wind Tasks and research groups based in mountainous countries – sets out the research and development needed to improve the financial competitiveness and ease of integration of wind energy in hilly or mountainous regions. The focus of the paper is on the interaction between the atmosphere, terrain, land cover, and wind turbines, during all stages of a project life cycle. The key needs include collaborative research and development facilities, improved wind and weather models that can cope with mountainous terrain, frameworks for sharing data, and a common, quantitative definition of site complexity. Addressing these needs will be essential for the affordable and reliable large-scale deployment of wind energy in many countries across the globe. Because of the widespread nature of complex flow and icing conditions, addressing these challenges will have positive impacts on the risk and cost of energy from wind energy globally.
Funder
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
Publisher
Copernicus GmbH
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference106 articles.
1. Antoniou, I., Pedersen, S. M., and Enevoldsen, P. B.: Wind shear and uncertainties in power curve measurement and wind resources, Wind Eng., 33, 449–468, 2009. a 2. Arbez, C., Clément, M., Godreau, C., Swytink-Binnema, N., Tete, K., and Wadham-Gagnon, M.: Development and Validation of an Ice Prediction Model for Wind Farms, Tech. rep., TechnoCenter éolien, https://nergica.com/en/development-and-validation-of-an-ice-prediction-model-for-wind (last access: 1 October 2022), 2016. a 3. Barber, S. and Nordborg, H.: Improving site-dependent power curve prediction accuracy using regression trees, J. Phys.: Conf. Ser., 1618, 062003, https://doi.org/10.1088/1742-6596/1618/6/062003, 2020. a, b 4. Barber, S., Buehler, M., and Nordborg, H.: IEA Wind Task 31: Design of a new comparison metrics simulation challenge for wind resource assessment in complex terrain Stage 1, J. Phys.: Conf. Ser., 1618, 062013, https://doi.org/10.1088/1742-6596/1618/6/062013, 2020a. a 5. Barber, S., Schubiger, A., Koller, S., Rumpf, A., Knaus, H., and Nordborg, H.: Actual Total Cost reduction of commercial CFD modelling tools for Wind Resource Assessment in complex terrain, J. Phys.: Conf. Ser., 1618, 062012, https://doi.org/10.1088/1742-6596/1618/6/062012, 2020b. a
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|