Optimizing Analog Ensembles for Sub-Daily Precipitation Forecasts

Author:

Jeworrek JuliaORCID,West Gregory,Stull RolandORCID

Abstract

This study systematically explores existing and new optimization techniques for analog ensemble (AnEn) post-processing of hourly to daily precipitation forecasts over the complex terrain of southwest British Columbia, Canada. An AnEn bias-corrects a target model forecast by searching for past dates with similar model forecasts (i.e., analogs), and using the verifying observations as ensemble members. The weather variables (i.e., predictors) that select the best past analogs vary among stations and seasons. First, different predictor selection techniques are evaluated and we propose an adjustment in the forward selection procedure that considerably improves computational efficiency while preserving optimization skill. Second, temporal trends of predictors are used to further enhance predictive skill, especially at shorter accumulation windows and longer forecast horizons. Finally, this study introduces a modification in the analog search that allows for selection of analogs within a time window surrounding the target lead time. These supplemental lead times effectively expand the training sample size, which significantly improves all performance metrics—even more than the predictor weighting and temporal-trend optimization steps combined. This study optimizes AnEns for moderate precipitation intensities but also shows good performance for the ensemble median and heavier precipitation rates. Precipitation is most challenging to predict at finer temporal resolutions and longer lead times, yet those forecasts see the largest enhancement in predictive skill from AnEn post-processing. This study shows that optimization of AnEn post-processing, including new techniques developed herein, can significantly improve computational efficiency and forecast performance.

Funder

BC Hydro

Natural Sciences and Engineering Research Council

Mitacs

Compute Canada

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3