In Situ and Radar Observations of the Low Reflectivity Ribbon in Supercells during VORTEX2

Author:

Griffin Casey B.123,Weiss Christopher C.1,Reinhart Anthony E.14,Snyder Jeffrey C.4,Bluestein Howard B.2,Wurman Joshua5,Kosiba Karen A.5

Affiliation:

1. Texas Tech University, Lubbock, Texas

2. School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

4. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

5. Center for Severe Weather Research, Boulder, Colorado

Abstract

Abstract During the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) field campaign, mobile radars observed a previously undocumented feature: the low-reflectivity ribbon (LRR). The LRR was characterized by reduced reflectivity ZH and differential reflectivity ZDR through a narrow region extending from the intersection of the hook and forward-flank regions of supercells. This study synthesizes kinematic and polarimetric radar observations with in situ measurements taken by the “StickNet” observing network. StickNet data have been used to establish that the LRR is associated with a localized minimum in pseudoequivalent potential temperature Pronounced drops in are observed by nine separate probes in three different supercell thunderstorms. Both single- and dual-Doppler analyses are used to examine the two- and three-dimensional structures of the winds within the LRR, revealing that the LRR is associated with cyclonic vertical vorticity aloft. Polarimetric radar observations are used to study the hydrometeor characteristics and the processes that cause those hydrometers to be present. Special consideration is given to the analysis of the vertical distribution of traditional and polarimetric variables, as well as the evolution of the kinematic fields retrieved by dual-Doppler analysis. The combination of thermodynamic, kinematic, and inferred microphysical observations supports a hypothesis that the LRR comprises sparse, large hail.

Funder

National Science Foundation

U.S. Department of Commerce

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3