An Analysis of an Ostensible Anticyclonic Tornado from 9 May 2016 Using High-Resolution, Rapid-Scan Radar Data

Author:

Snyder Jeffrey C.1,Bluestein Howard B.2,Wienhoff Zachary B.2,Kuster Charles M.3,Reif Dylan W.2

Affiliation:

1. NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

2. School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. NOAA/OAR National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Abstract

AbstractTornadic supercells moved across parts of Oklahoma on the afternoon and evening of 9 May 2016. One such supercell, while producing a long-lived tornado, was observed by nearby WSR-88D radars to contain a strong anticyclonic velocity couplet on the lowest elevation angle. This couplet was located in a very atypical position relative to the ongoing cyclonic tornado and to the supercell’s updraft. A storm survey team identified damage near where this couplet occurred, and, in the absence of evidence refuting otherwise, the damage was thought to have been produced by an anticyclonic tornado. However, such a tornado was not seen in near-ground, high-resolution radar data from a much closer, rapid-scan, mobile radar. Rather, an elongated velocity couplet was observed only at higher elevation angles at altitudes similar to those at which the WSR-88D radars observed the strong couplet. This paper examines observations from two WSR-88D radars and a mobile radar from which it is argued that the anticyclonic couplet (and a similar one ~10 min later) were actually quasi-horizontal vortices centered ~1–1.5 km AGL. The benefits of having data from a radar much closer to the convective storm being sampled (e.g., better spatial resolution and near-ground data coverage) and providing more rapid volume updates are readily apparent. An analysis of these additional radar data provides strong, but not irrefutable, evidence that the anticyclonic tornado that may be inferred from WSR-88D data did not exist; consequently, upon discussions with the National Weather Service, it was not included in Storm Data.

Funder

Division of Atmospheric and Geospace Sciences

NOAA Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3