Contraction Rate and Its Relationship to Frontogenesis, the Lyapunov Exponent, Fluid Trapping, and Airstream Boundaries

Author:

Cohen Robert A.1,Schultz David M.2

Affiliation:

1. Department of Physics, East Stroudsburg University, East Stroudsburg, Pennsylvania

2. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Although a kinematic framework for diagnosing frontogenesis exists in the form of the Petterssen frontogenesis function and its vector generalization, a similar framework for diagnosing airstream boundaries (e.g., drylines, lee troughs) has not been constructed. This paper presents such a framework, beginning with a kinematic expression for the rate of change of the separation vector between two adjacent air parcels. The maximum growth rate of the separation vector is called the instantaneous dilatation rate and its orientation is called the axis of dilatation. Similarly, a maximum decay rate is called the instantaneous contraction rate and its orientation is called the axis of contraction. These expressions are related to the vector frontogenesis function, in that the growth rate of the separation vector corresponds with the scalar frontogenesis function, and the rotation rate of the separation vector corresponds with the rotational component of the vector frontogenesis function. Because vorticity can rotate air-parcel pairs out of regions of deformation, the instantaneous dilatation and contraction rates and axes may not be appropriate diagnostics of airstream boundaries for fluid flows in general. Rather, the growth rate and orientation of an airstream boundary may correspond better to the so-called asymptotic contraction rate and the asymptotic axis of dilatation, respectively. Expressions for the asymptotic dilatation and contraction rates, as well as their orientations, the asymptotic dilatation and contraction axes, are derived. The asymptotic dilatation rate is related to the Lyapunov exponent for the flow. In addition, a fluid-trapping diagnostic is derived to distinguish among adjacent parcels being pulled apart, being pushed together, or trapped in an eddy. Finally, these diagnostics are applied to simple, idealized, steady-state flows and a nonsteady idealized vortex in nondivergent, diffluent flow to show their utility for determining the character of air-parcel trajectories and airstream boundaries.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. Quasigeostrophic diagnosis of cyclogenesis associated with a cutoff extratropical cyclone—The Christmas 1987 storm.;Barnes;Mon. Wea. Rev,1993

2. Diagnosing an operational numerical model using Q-vector and potential vorticity concepts.;Barnes;Wea. Forecasting,1994

3. The effect of homogeneous turbulence on material lines and surfaces.;Batchelor;Proc. Roy. Soc,1952

4. Self-similar coherent structures in two-dimensional decaying turbulence.;Benzi;J. Phys. A: Math. Gen,1988

5. Über die dreidimensional verknüpfende Wetteranalyse I.;Bergeron;Geofys. Publ,1928

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3