Prolonged Dry Episodes over the Conterminous United States: New Tendencies Emerging during the Last 40 Years

Author:

Groisman Pavel Ya1,Knight Richard W.2

Affiliation:

1. UCAR Visiting Scientist, National Climatic Data Center, Asheville, North Carolina

2. STG, Inc., Asheville, North Carolina

Abstract

AbstractA disproportionate increase in precipitation coming from intense rain events, in the situation of general warming (thus, an extension of the vegetation period with intensive transpiration), and an insignificant change in total precipitation could lead to an increase in the frequency of a potentially serious type of extreme events: prolonged periods without precipitation (even when the mean seasonal rainfall totals increase). This paper investigates whether this development is already occurring during the past several decades over the conterminous United States, for the same period when changes in frequency of intense precipitation events are being observed. Lengthy strings of “dry” days without sizeable (>1.0 mm) precipitation were assessed only during the warm season (defined as a period when mean daily temperature is above the 5°C threshold) when water is intensively used for transpiration and prolonged periods without sizable rainfall represent a hazard for terrestrial ecosystem’s health and agriculture. During the past four decades, the mean duration of prolonged dry episodes (1 month or longer in the eastern United States and 2 months or longer in the southwestern United States) has significantly increased. As a consequence the return period of 1-month-long dry episodes over the eastern United States has reduced more than twofold from 15 to 6–7 yr. The longer average duration of dry episodes has occurred during a relatively wet period across the country but is not observed over the northwestern United States.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3