A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming

Author:

Dai Aiguo1,Trenberth Kevin E.1,Qian Taotao1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract A monthly dataset of Palmer Drought Severity Index (PDSI) from 1870 to 2002 is derived using historical precipitation and temperature data for global land areas on a 2.5° grid. Over Illinois, Mongolia, and parts of China and the former Soviet Union, where soil moisture data are available, the PDSI is significantly correlated (r = 0.5 to 0.7) with observed soil moisture content within the top 1-m depth during warm-season months. The strongest correlation is in late summer and autumn, and the weakest correlation is in spring, when snowmelt plays an important role. Basin-averaged annual PDSI covary closely (r = 0.6 to 0.8) with streamflow for seven of world's largest rivers and several smaller rivers examined. The results suggest that the PDSI is a good proxy of both surface moisture conditions and streamflow. An empirical orthogonal function (EOF) analysis of the PDSI reveals a fairly linear trend resulting from trends in precipitation and surface temperature and an El Niño– Southern Oscillation (ENSO)-induced mode of mostly interannual variations as the two leading patterns. The global very dry areas, defined as PDSI < −3.0, have more than doubled since the 1970s, with a large jump in the early 1980s due to an ENSO-induced precipitation decrease and a subsequent expansion primarily due to surface warming, while global very wet areas (PDSI > +3.0) declined slightly during the 1980s. Together, the global land areas in either very dry or very wet conditions have increased from ∼20% to 38% since 1972, with surface warming as the primary cause after the mid-1980s. These results provide observational evidence for the increasing risk of droughts as anthropogenic global warming progresses and produces both increased temperatures and increased drying.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1657 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3