What Is the Added Value of a Convection-Permitting Model for Forecasting Extreme Rainfall over Tropical East Africa?

Author:

Woodhams Beth J.1,Birch Cathryn E.12,Marsham John H.13,Bain Caroline L.2,Roberts Nigel M.4,Boyd Douglas F. A.2

Affiliation:

1. School of Earth and Environment, University of Leeds, Leeds, United Kingdom

2. Met Office, Exeter, United Kingdom

3. National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom

4. MetOffice@Reading, Met Office, Reading, United Kingdom

Abstract

ABSTRACT Forecasting convective rainfall in the tropics is a major challenge for numerical weather prediction. The use of convection-permitting (CP) forecast models in the tropics has lagged behind the midlatitudes, despite the great potential of such models in this region. In the scientific literature, there is very little evaluation of CP models in the tropics, especially over an extended time period. This paper evaluates the prediction of convective storms for a period of 2 years in the Met Office operational CP model over East Africa and the global operational forecast model. A novel localized form of the fractions skill score is introduced, which shows variation in model skill across the spatial domain. Overall, the CP model and the global model both outperform a 24-h persistence forecast. The CP model shows greater skill than the global model, in particular on subdaily time scales and for storms over land. Forecasts over Lake Victoria are also improved in the CP model, with an increase in hit rate of up to 20%. Contrary to studies in the midlatitudes, the skill of both models shows a large dependence on the time of day and comparatively little dependence on the forecast lead time within a 48-h forecast. Although these results provide more motivation for forecasters to use the CP model to produce subdaily forecasts with increased detail, there is a clear need for more in situ observations for data assimilation into the models and for verification. A move toward ensemble forecasting could have further benefits.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3