Affiliation:
1. Centre National de Recherches Météorologiques Université de Toulouse Météo‐France CNRS Toulouse France
Abstract
AbstractDue to their severity and lack of predictability, understanding and forecasting extreme precipitation events (EPEs) is critical for disaster risk reduction. The present work documents the large‐scale environment of tropical EPEs based on a 42‐year data set combining dense rain‐gauge networks that cover several tropical small islands and coastal regions. Approximately 10%–30% of EPEs are associated with a tropical storm or cyclone (TC), except for Reunion, for which its high topography makes it reach 55%. TCs multiply the EPE probability by a factor of 4–15, especially during TCs of category 1 or higher. A composite analysis demonstrates that the remaining large part of EPEs occurs within large‐scale and strong moist, convective, and cyclonic wind anomalies resulting from the superimposition of intraseasonal, seasonal‐to‐annual, and interannual timescales. These intense anomalies come essentially from intraseasonal variability, and lower frequencies improve the effect of intraseasonal events in creating a favorable environment for EPEs.
Publisher
American Geophysical Union (AGU)