Comparing the Lasso Predictor-Selection and Regression Method with Classical Approaches of Precipitation Bias Adjustment in Decadal Climate Predictions

Author:

Li Jingmin1,Pollinger Felix1,Paeth Heiko1

Affiliation:

1. Institute of Geography and Geology, University of Wuerzburg, Würzburg, Germany

Abstract

AbstractIn this study, we investigate the technical application of the regularized regression method Lasso for identifying systematic biases in decadal precipitation predictions from a high-resolution regional climate model (CCLM) for Europe. The Lasso approach is quite novel in climatological research. We apply Lasso to observed precipitation and a large number of predictors related to precipitation derived from a training simulation, and transfer the trained Lasso regression model to a virtual forecast simulation for testing. Derived predictors from the model include local predictors at a given grid box and EOF predictors that describe large-scale patterns of variability for the same simulated variables. A major added value of the Lasso function is the variation of the so-called shrinkage factor and its ability in eliminating irrelevant predictors and avoiding overfitting. Among 18 different settings, an optimal shrinkage factor is identified that indicates a robust relationship between predictand and predictors. It turned out that large-scale patterns as represented by the EOF predictors outperform local predictors. The bias adjustment using the Lasso approach mainly improves the seasonal cycle of the precipitation prediction and, hence, improves the phase relationship and reduces the root-mean-square error between model prediction and observations. Another goal of the study pertains to the comparison of the Lasso performance with classical model output statistics and with a bivariate bias correction approach. In fact, Lasso is characterized by a similar and regionally higher skill than classical approaches of model bias correction. In addition, it is computationally less expensive. Therefore, we see a large potential for the application of the Lasso algorithm in a wider range of climatological applications when it comes to regression-based statistical transfer functions in statistical downscaling and model bias adjustment.

Funder

the German Minister of Education and Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3