pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information

Author:

Boateng DanielORCID,Mutz Sebastian G.ORCID

Abstract

Abstract. The nature and severity of climate change impacts vary significantly from region to region. Consequently, high-resolution climate information is needed for meaningful impact assessments and the design of mitigation strategies. This demand has led to an increase in the application of empirical-statistical downscaling (ESD) models to general circulation model (GCM) simulations of future climate. In contrast to dynamical downscaling, the perfect prognosis ESD (PP-ESD) approach has several benefits, including low computation costs, the prevention of the propagation of GCM-specific errors, and high compatibility with different GCMs. Despite their advantages, the use of ESD models and the resulting data products is hampered by (1) the lack of accessible and user-friendly downscaling software packages that implement the entire downscaling cycle, (2) difficulties reproducing existing data products and assessing their credibility, and (3) difficulties reconciling different ESD-based predictions for the same region. We address these issues with a new open-source Python PP-ESD modeling framework called pyESD. pyESD implements the entire downscaling cycle, i.e., routines for data preparation, predictor selection and construction, model selection and training, evaluation, utility tools for relevant statistical tests, visualization, and more. The package includes a collection of well-established machine learning algorithms and allows the user to choose a variety of estimators, cross-validation schemes, objective function measures, and hyperparameter optimization in relatively few lines of code. The package is well-documented, highly modular, and flexible. It allows quick and reproducible downscaling of any climate information, such as precipitation, temperature, wind speed, or even short-term glacier length and mass changes. We demonstrate the use and effectiveness of the new PP-ESD framework by generating weather-station-based downscaling products for precipitation and temperature in complex mountainous terrain in southwestern Germany. The application example covers all important steps of the downscaling cycle and different levels of experimental complexity. All scripts and datasets used in the case study are publicly available to (1) ensure the reproducibility and replicability of the modeled results and (2) simplify learning to use the software package.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3