Affiliation:
1. School of Meteorology, University of Oklahoma, Norman, Oklahoma
Abstract
Abstract
Explicit forecasts of a tornado-like vortex (TLV) require subkilometer grid spacing because of their small size. Most previous TLV prediction studies started from interpolated kilometer grid spacing initial conditions (ICs) rather than subkilometer grid spacing ICs. The tornadoes embedded in the 8 May 2003 Oklahoma City tornadic supercell are used to understand the impact of IC resolution on TLV predictions. Two ICs at 500-m and 2-km grid spacings are, respectively, produced through an efficient dual-resolution (DR) and a single-coarse-resolution (SCR) EnVar ingesting a 2-km ensemble. Both experiments launch 1-h forecasts at 500-m grid spacing. Diagnostics of data assimilation (DA) cycling reveal DR produces stronger and broader rear-flank cold pools, more intense downdrafts and updrafts with finer scales, and more hydrometeors at high altitudes through accumulated differences between two DA algorithms. Relative differences in DR, compared to SCR, include the integration from higher-resolution analyses, the update for higher-resolution backgrounds, and the propagation of ensemble perturbations along higher-resolution model trajectory. Predictions for storm morphology and cold pools are more realistic in DR than in SCR. The DR-TLV tracks match better with the observed tornado tracks than SCR-TLV in timing of intensity variation, and in duration. Additional experiments suggest 1) the analyzed kinematic variables strongly influence timing of intensity variation through affecting both low-level rear-flank outflow and midlevel updraft; 2) potential temperature analysis by DR extends the second track’s duration consistent with enhanced low-level stretching, delayed broadening large-scale downdraft, and (or) increased near-surface baroclinic vorticity supply; and 3) hydrometeor analyses have little impact on TLV predictions.
Funder
National Oceanic and Atmospheric Administration
Publisher
American Meteorological Society
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献