Improving CONUS Convective‐Scale Forecasting With Simultaneous Multiscale Data Assimilation

Author:

Wang Yongming1ORCID,Wang Xuguang1ORCID

Affiliation:

1. School of Meteorology University of Oklahoma Norman OK USA

Abstract

AbstractAccurate initialization of CONUS convective‐scale forecasting requires a proper estimate of all resolved scales. This study further develops and examines a simultaneous multiscale data assimilation (MDA) approach in EnVar with modulated cross‐scale and cross‐variable covariances. The method is examined using 10 retrospective cases with the assimilation of both in situ and radar reflectivity observations (hereafter, SimMDA). The necessity of the modulated and therefore weakened cross‐covariances in simultaneous MDA for CONUS convective‐scale forecasting is first demonstrated. The relative benefits of increasing the decomposed‐scale number with increased computational cost in SimMDA are also discussed. The impact of the further developed simultaneous MDA method is revealed by comparing it with a commonly adopted DA approach (Baseline), which separately assimilates in situ and reflectivity observations using individual single‐scale localization. During DA cycling, SimMDA improves analysis accuracy for temperature and reflectivity and reduces biases in all variables compared to Baseline. SimMDA yields significantly better forecasts than Baseline for most lead times. Additional experiments are conducted to attribute such improvements in a case study. Specifically, an experiment the same as Baseline except using simultaneous MDA for reflectivity assimilation enhances cold pools and inflows and thus improves storms by making larger‐scale increments. An experiment the same as Baseline except using simultaneous MDA for in situ assimilation more properly constrains small‐scale covariances, leading to more reasonable correlations along the front and more accurate moisture near the dryline and consequently improved analyses and forecasts. Both effects together largely contribute to the overall improvements of SimMDA compared to Baseline.

Funder

NOAA Research

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3