A Multivariate Additive Inflation Approach to Improve Storm‐Scale Ensemble‐Based Data Assimilation and Forecasts: Methodology and Experiment With a Tornadic Supercell

Author:

Wang Yongming1ORCID,Wang Xuguang1ORCID

Affiliation:

1. School of Meteorology University of Oklahoma Norman OK USA

Abstract

AbstractEnsemble‐based convective‐scale radar data assimilation commonly suffers from an underdispersive background ensemble. This study introduces a multivariate additive‐inflation method to address such deficiency. The multivariate additive inflation (AI) approach generates coherent random perturbations drawn from a newly constructed convective‐scale static background error covariance matrix for all state variables including hydrometeors and vertical velocity. This method is compared with a previously proposed univariate AI approach, which perturbs each variable individually without cross‐variable coherency. Comparisons are performed on the analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell. Within assimilation cycles, the multivariate approach is more efficient in increasing reflectivity spread and thus has a reduced spinup time than the univariate approach; the additional inclusion of hydrometeors and vertical velocity results in more background spread for both reflectivity and radial velocity. Significant differences among AI experiments also exist in the subsequent forecasts and are more pronounced for the forecasts initialized from the earlier assimilation cycles. The multivariate approach yields better forecasts of low‐level rotation, reflectivity distributions, and storm maintenance for most lead times. The additional inclusion of hydrometeor and vertical velocity in the multivariate method is beneficial in forecasts. Conversely, the additional inclusion of hydrometeor and vertical velocity in the univariate method poses negative impacts for the majority of forecast lead times.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3