A Local Unscented Transform Kalman Filter for Nonlinear Systems

Author:

Sung Kwangjae1,Song Hyo-Jong2,Kwon In-Hyuk3

Affiliation:

1. Development Division, Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea

2. Department of Environmental Engineering and Energy, Myongji University, Yongin-si, South Korea

3. Data Assimilation Team, Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea

Abstract

AbstractThis paper proposes an efficient data assimilation approach based on the sigma-point Kalman filter (SPKF). With a potential for nonlinear filtering applications, the proposed approach, designated as the local unscented transform Kalman filter (LUTKF), is similar to the SPKF in that the mean and covariance of the nonlinear system are estimated by propagating a set of sigma points—also referred to as ensemble members—generated using the scaled unscented transformation (SUT), while making no assumptions with regard to nonlinear models. However, unlike the SPKF, the LUTKF can reduce the influence of observations on distant state variables by employing a localization scheme to suppress spurious correlations between distant locations in the error covariance matrix. Moreover, while the SPKF uses the augmented state vector constructed by concatenating the model states, model noise, and measurement noise, the system state for the LUTKF is not augmented with the random noise variables, thereby providing an accurate state estimate with relatively few sigma points. In sensitivity experiments executed with a 40-variable Lorenz system, the LUTKF required only three sigma points to prevent filter divergence for linear/nonlinear measurement models. Comparisons of the LUTKF and the local ensemble transform Kalman filters (LETKFs) reveal the advantages of the proposed filter in situations that share common features with geophysical data assimilation applications. In particular, the LUTKF shows considerable benefits over LETKFs when assimilating densely spaced observations that are related nonlinearly to the model state and that have high noise levels—such as the assimilation of remotely sensed data from satellites and radars.

Funder

Korea Meteorological Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3