Bayesian Forecasting of Seasonal Typhoon Activity: A Track-Pattern-Oriented Categorization Approach

Author:

Chu Pao-Shin1,Zhao Xin2,Ho Chang-Hoi2,Kim Hyeong-Seog2,Lu Mong-Ming2,Kim Joo-Hong2

Affiliation:

1. Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

2. University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract A new approach to forecasting regional and seasonal tropical cyclone (TC) frequency in the western North Pacific using the antecedent large-scale environmental conditions is proposed. This approach, based on TC track types, yields probabilistic forecasts and its utility to a smaller region in the western Pacific is demonstrated. Environmental variables used include the monthly mean of sea surface temperatures, sea level pressures, low-level relative vorticity, vertical wind shear, and precipitable water of the preceding May. The region considered is the vicinity of Taiwan, and typhoon season runs from June through October. Specifically, historical TC tracks are categorized through a fuzzy clustering method into seven distinct types. For each cluster, a Poisson or probit regression model cast in the Bayesian framework is applied individually to forecast the seasonal TC activity. With a noninformative prior assumption for the model parameters, and following Chu and Zhao for the Poisson regression model, a Bayesian inference for the probit regression model is derived. A Gibbs sampler based on the Markov chain Monte Carlo method is designed to integrate the posterior predictive distribution. Because cluster 5 is the most dominant type affecting Taiwan, a leave-one-out cross-validation procedure is applied to predict seasonal TC frequency for this type for the period of 1979–2006, and the correlation skill is found to be 0.76.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3