The Local Unscented Transform Kalman Filter for the Weather Research and Forecasting Model

Author:

Sung Kwangjae1ORCID

Affiliation:

1. Department of Software, Sangmyung University, Cheonan-si 31066, Republic of Korea

Abstract

In this study, the local unscented transform Kalman filter (LUTKF) proposed in the previous study estimates the state of the Weather Research and Forecasting (WRF) model through local analysis. Real observations are assimilated to investigate the analysis performance of the WRF-LUTKF system. The WRF model as a regional numerical weather prediction (NWP) model is widely used to explain the atmospheric state for mesoscale meteorological fields, such as operational forecasting and atmospheric research applications. For the LUTKF based on the sigma-point Kalman filter (SPKF), the state of the nonlinear system is estimated by propagating ensemble members through the unscented transformation (UT) without making any linearization assumptions for nonlinear models. The main objective of this study is to examine the feasibility of mesoscale data assimilations for the LUTKF algorithm using the WRF model and real observations. Similar to the local ensemble transform Kalman filter (LETKF), by suppressing the impact of distant observations on model state variables through localization schemes, the LUTKF can eliminate spurious long-distance correlations in the background covariance, which are induced by the sampling error due to the finite ensemble size; therefore, the LUTKF used in the WRF-LUTKF system can efficiently execute the data assimilation with a small ensemble size. Data assimilation test results demonstrate that the LUTKF can provide reliable analysis performance in estimating the WRF model state with real observations. Experiments with various ensemble size show that the LETKF can provide better estimation results with a larger ensemble size, while the LUTKF can achieve accurate and reliable assimilation results even with a smaller ensemble size.

Funder

2021 Research Grant from Sangmyung University, South Korea

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3