A Heuristic Approach for Precipitation Data Assimilation: Effect of Forecast Errors and Assimilation of NCEP Stage IV Precipitation Analyses

Author:

Pérez Hortal Andrés A.1,Zawadzki Isztar1,Yau M. K.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

Abstract Recently, Pérez Hortal et al. introduced a simple data assimilation (DA) technique named localized ensemble mosaic assimilation (LEMA) for the assimilation of radar-derived precipitation observations. The method constructs an analysis by assigning to each model grid point the information from the ensemble member that is locally closest to the precipitation observations. This study explores the effects of the forecasts errors in the performance of the method using a series of observing system simulation experiments (OSSEs) with different magnitudes of forecast errors employing a small ensemble of 20 members. The ideal experiments show that LEMA is able to produce forecasts with considerable and long-lived error reductions in the fields of precipitation, temperature, humidity, and wind. Nonetheless, the quality of the analysis deteriorates with increasing forecast errors beyond the spread of the ensemble. To overcome this limitation, we expand the spread of the ensemble used to construct the analysis mosaic by considering states at different times and states from forecasts initialized at different times (lagged forecasts). The ideal experiments show that the additional information in the expanded ensemble improves the performance of LEMA, producing larger and long-lived improvements in the state variables and in the precipitation forecast quality. Finally, the potential of LEMA is explored in real DA experiments using actual Stage IV precipitation observations. When LEMA uses only the background members, the quality of the precipitation forecast shows small or no improvements. However, the expanded ensemble improves the LEMA’s effectiveness, producing larger and more persistent improvements in precipitation forecasts.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3