A Sequential Non-Gaussian Approach for Precipitation Data Assimilation

Author:

Pérez Hortal Andrés A.1,Zawadzki Isztar1,Yau M. K.1

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

AbstractIn two recent studies, the authors presented a new data assimilation (DA) method for precipitation observations that does not require Gaussianity or linearity assumptions. The method, called localized ensemble mosaic assimilation (LEMA), initializes the new ensemble forecast by relaxing the background ensemble (prior) toward a single analysis composed of different column states taken from the ensemble members with the lowest error in the precipitation forecast. However, a limitation of the LEMA method is that relaxing the background ensemble toward that analysis severely reduces the spread of the ensemble, thus, limiting its usefulness for cycled DA applications. This study presents a new version of LEMA, called localized ensemble mosaic assimilation sequence (LEMAS), suitable for cycled DA operations. LEMAS constructs an ensemble of analysis mosaics using a small group of members closer to the observations instead of only the closest one. The new ensemble forecast is then initialized by recentering the prior ensemble around the mean of the analysis ensemble while scaling the original background perturbations to match the spread of the analysis mosaics. A series of ideal and real DA experiments are used to evaluate the potential of LEMAS for the assimilation of hourly accumulation observations. A comparison of LEMAS with the local ensemble transform Kalman filter (LETKF) using idealized experiments shows that LEMAS produces similar or slightly better forecast quality than the LETKF in temperature, water vapor, winds, and precipitation. Extending this comparison to real DA experiments assimilating Stage-IV precipitation observations shows that both methods produce precipitation forecasts of comparable quality.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3